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Main Example

Let G = (V ,E ) be a graph. A flat of G is a collection of edges F
such that each connected component of the graph with vertex set
V and edge set F is an induced subgraph of G .
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Bond Lattice

The bond lattice of a graph G is the poset obtained by ordering
the flats of a graph by containment. It is denoted L(G ).
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The Möbius Function

The minimum element of a poset P is denoted by 0̂. For the
entirety of this talk, we will assume our posets have minimum
elements.

We will also assume that all posets are finite.

The Möbius function of a poset P is the unique map, µ : P → Z,
such that ∑

x≤y
µ(x) = δ0̂,y .
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The Möbius function of a poset P is the unique map, µ : P → Z,
such that ∑

x≤y
µ(x) = δ0̂,y .



Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)



Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)

+1

1 1 1



Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)

+1

−1 −1 −1



Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)

+1

−1 −1 −1

+2



Rank
We say a poset P is ranked if for every x ∈ P every saturated 0̂–x
chain has the same length.

In this case, the rank of x ∈ P, is given
by

ρ(x) = length of a saturated 0̂–x chain.

We also define
ρ(P) = max

x∈P
ρ(x).
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The Characteristic Polynomial
The characteristic polynomial of a poset P is

χ(P, t) =
∑
x∈P

µ(x)tρ(P)−ρ(x).
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χ(L(K3), t) = t2 − 3t + 2 = (t − 1)(t − 2)

If G is a graph, c(G ) is the number of connected components, and
P(G , t) is the chromatic polynomial of G then

P(G , t) = tc(G)χ(L(G ), t).
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Second Application: Counting Increasing Forests

Let T be a tree with vertices labeled by distinct integers. We say
T is an increasing tree if the labels along any path starting at the
minimum vertex of the tree form an increasing sequence.
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Second Application: Counting Increasing Forests

The increasing forest generating function of G is given by

IF (G , t) =
∑
k≥0

(−1)k IFkt
n−k

where IFk is the number of increasing forests with k edges and
n = |V (G )|.
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Second Application: Counting Increasing Forests

A labeling of a graph with the numbers 1, 2 . . . , n is called a
perfect elimination order if whenever i < j < k and ik and jk are
edges then so is ij .

Using quotient posets we can show the following.

Theorem
Let G be graph with vertices labeled 1, 2, . . . , n. We have

IF (G , t) = P(G , t)

if and only if the labeling is a perfect elimination ordering.



Second Application: Counting Increasing Forests

A labeling of a graph with the numbers 1, 2 . . . , n is called a
perfect elimination order if whenever i < j < k and ik and jk are
edges then so is ij .

Using quotient posets we can show the following.

Theorem
Let G be graph with vertices labeled 1, 2, . . . , n. We have

IF (G , t) = P(G , t)

if and only if the labeling is a perfect elimination ordering.



Second Application: Counting Increasing Forests

A labeling of a graph with the numbers 1, 2 . . . , n is called a
perfect elimination order if whenever i < j < k and ik and jk are
edges then so is ij .

Using quotient posets we can show the following.

Theorem
Let G be graph with vertices labeled 1, 2, . . . , n. We have

IF (G , t) = P(G , t)

if and only if the labeling is a perfect elimination ordering.



Third Application: The Corank Polynomial
Given a ranked poset P, the corank polynomial is defined by

CR(P, t) =
∑
x∈P

tρ(P)−ρ(x).

Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)

2

1 1 1

0

CR(L(K3), t) = t2 + 3t + 1



Third Application: The Corank Polynomial
Given a ranked poset P, the corank polynomial is defined by

CR(P, t) =
∑
x∈P

tρ(P)−ρ(x).

Example

∅

{12} {13} {23}

{12, 13, 23}

L(K3)

2

1 1 1

0

CR(L(K3), t) = t2 + 3t + 1



Third Application: The Corank Polynomial

For L(K3) we have

χ(L(K3), t) = t2 − 3t + 2

and
CR(L(K3), t) = t2 + 3t + 1.

Is it possible to find another poset where these polynomials
“switch”?

Yes!
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How we find the poset where the polynomials switch?
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The edge labeling on P is an EL-labeling. The poset C (P) is the
poset of saturated chains starting at 0̂ in P.
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Upon identification we get the following.
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Thank You!


